Rectifier circuits & DC power supplies

Goal: Generate the DC voltages – needed for most electronics – starting with the AC power that comes through the power line.

120 V_{RMS} \quad f = 60 \text{ Hz} \quad (T = 16.67 \text{ ms})

V_{ac} = (170\text{V}) \sin \left(\frac{2\pi}{T} t \right)

How to take time-varying voltage with an average value of 0 and turn it into a DC voltage?
transformer : reduces AC amplitude to something safe and manageable. V_{peak} from the transformer will be a few volts bigger than the desired DC voltage.

peak rectifier : breaks up the AC waveform and produces a $V_{DC} \approx V_{peak}$.

regulator : Refines the output of the rectifier. (optional)

Issues:
- Total power
- Efficiency
- Cost
- Load regulation (Does V_{DC} change as the load draws different amounts of current?)
- Line regulation (Does V_{DC} change if the input AC amplitude changes?)
Half-wave rectifier

\[V_S(t) = V_p \sin \left(\frac{2\pi}{T} t \right) \]

\[V_p = 3 \text{ V.} \]

Diode is off until \(V_S > 0.7 \text{ V.} \)

Current flows when diode is in forward conduction. The output tracks the input during positive half cycle.

Resistor represents a load.

\(V_R \)

We are trying to deliver DC power to the load.
The diode turns off when $V_S < 0.7 \text{ V}$. It stays off during the negative half cycle of the sinusoid.

$V_S > 0$: $v_R(t) \approx V_p \sin \left(\frac{2\pi}{T} t \right) - 0.7\text{V}$

$V_S < 0$: $v_R(t) = 0$:

$V_o \ (\text{avg}) \approx \frac{V_p}{\pi} - \frac{0.7\text{V}}{2}$

$\neq 0$!

To get the negative half of the cycle, turn the diode around.
Time delay

Note that since the diode will not turn on until the sinusoid goes above \(\approx 0.7 \text{ V} \), there is time delay before the rectifier “turns on”. It is a simple matter to determine the delay time, using the “on-off” diode model:

\[
0.7V = V_p \sin \left(\frac{2\pi}{T} t' \right)
\]

\[
t' = \frac{T}{2\pi} \arcsin \left(\frac{0.7V}{V_p} \right)
\]

If \(f = 60 \text{ Hz} \) (\(T = 16.67 \text{ ms} \)) and \(V_p = 3 \text{ V} \), \(t' = 0.62 \text{ ms} \).

There is a similar time offset at the other end of the positive half cycle.

The effect of the time offset become negligible if \(V_P \gg 0.7 \text{ V} \).
Peak rectifier

Add a largish capacitor after the diode, in parallel with the load.

Initially, diode is on & cap charges to $V_P - 0.7 \text{ V}$.

While $V_S < v_C$, diode is off! Cap discharges through load.
Diode stay off until V_S comes back around and becomes bigger than v_C. Then diode comes on again and re-charges the capacitor.

When V_S falls to less than v_C, the diode turn off again, and the cycle continues.
Not a perfect DC voltage at output. There is some variation (ripple) around an average value.

\[
V_o (max) = V_P - 0.7V
\]

\[
V_o (min) = [V_P - 0.7V] \exp\left(-\frac{t_1}{RC}\right)
\]

\[
\approx [V_P - 0.7V] \exp\left(-\frac{T}{RC}\right)
\]

\[
V_{ripple} = V_o (max) - V_o (min)
\]

\[
= [V_P - 0.7V] \left[1 - \exp\left(-\frac{T}{RC}\right)\right]
\]

\[
V_o (avg) \approx V_o (max) - \frac{V_{ripple}}{2}
\]

\[t_1 = \text{time when diode conducts again.}\]

\[t_1 \approx T\]
Example 1

\[V_S = (15V) \sin \left(\frac{2\pi}{T} t \right) \]

\[T = 16.67 \text{ ms} \]

Find the average value of \(v_o \) and the ripple voltage. Repeat for \(R = 1000 \Omega \) and 200 \(\Omega \).

\[
V_{\text{ripple}} = [V_p - 0.7V] \left[1 - \exp \left(-\frac{T}{RC} \right) \right]
\]

\[
= [15V - 0.7V] \left[1 - \exp \left(-\frac{16.67\text{ms}}{(5000\Omega)(100\mu\text{F})} \right) \right]
\]

\[= 0.47 \text{ V} \]

\[
V_o (\text{avg}) = V_o (\text{max}) - \frac{V_{\text{ripple}}}{2} = 14.3V - \frac{0.47V}{2} = 14.1V
\]

\[
R = 1 \text{ k}\Omega
\]

\[
V_{\text{ripple}} = 2.19 \text{ V}
\]

\[
V_o (\text{avg}) = 13.2 \text{ V}
\]

\[
R = 200 \Omega
\]

\[
V_{\text{ripple}} = 8.09 \text{ V}
\]

\[
V_o (\text{avg}) = 10.2 \text{ V}
\]

Drawing more current causes the ripple to increase and \(V_{\text{DC}} \) to droop. Can fight this with more capacitance.
Example 2

\[V_s = (25V) \sin \left(\frac{2\pi}{T} t \right) \]

\[T = 16.67 \text{ ms} \]

Find the capacitance so that the ripple will be no bigger than 1 V.

What is the DC voltage?

\[V_{\text{ripple}} = [V_P - 0.7V] \left[1 - \exp \left(-\frac{T}{RC} \right) \right] \]

\[C = -\frac{T}{R} \left[\ln \left(1 - \frac{V_{\text{ripple}}}{V_P - 0.7V} \right) \right]^{-1} = \frac{16.67 \text{ ms}}{1000 \Omega} \left[\ln \left(1 - \frac{1V}{24.3V} \right) \right]^{-1} = 397 \mu F \]

\[V_o (\text{avg}) = V_o (\text{max}) - \frac{V_{\text{ripple}}}{2} = 24.3V - \frac{1V}{2} = 23.8V \]

What capacitance is needed to limit the ripple to 0.1 V?

\[C = 4000 \mu F \]
Full-wave rectifier

With a few more diodes, we can rectify the entire sinusoidal input.

The diodes are in a bridge configuration.

During the positive half cycle of the input, diodes 1 and 2 will be forward biased. Current will flow from the positive source through those diodes and the resistor to generate a positive voltage across the resistor.

During the negative half cycle of the input, diodes 3 and 4 will be forward biased. Current will flow from the negative source through those diodes and the resistor to generate a positive voltage across the resistor, again.
Note that there are no two diode drops in the conduction path(s). Also, the frequency is effectively doubled.
Full-wave peak rectifier

Placing a capacitor in parallel with the load, turns the circuit into a full-wave peak rectifier. It behaves essentially the same as the half-wave peak rectifier except with twice the frequency (half the period).

\[V_S(t) = V_p \sin \left(\frac{2\pi}{T} t \right) \]

\[V_p = 8 \text{ V.} \]

The ripple voltage is calculated in exactly the same way, except that the period is cut in half (frequency doubled).

\[V_{\text{ripple}} = [V_P - 1.4V] \left[1 - \exp \left(-\frac{T}{2RC} \right) \right] \]

Same as doubling capacitance!
Example 3

You want to use a wall transformer that produces 10 V_{RMS} at the secondary to generate a DC voltage. The desired voltage DC should be greater than 12 V and it should be able to supply at least 50 mA while keeping the voltage ripple to less than 5%. Design the rectifier to meet these goals. (Note: $f = 60 \text{ Hz}$.)

$10 \text{ V}_{\text{RMS}} \rightarrow 14.1 \text{ V}$ amplitude

effective $R_L \approx \frac{V_o}{I_o} = 12.0 \text{ V} / (50 \text{ mA}) = 240 \Omega$

Note: This would be the minimum value of effective resistance. If we choose C to meet the ripple requirement, then we will still be safe if we use a slightly higher V_o.

Two options: half-wave or full-wave rectifier. Try both.

Half-wave:

$V_o(\text{max}) = V_p - 0.7 \text{ V} = 13.4 \text{ V} \rightarrow V_{\text{ripple}} \leq 0.67 \text{ V}$.

$$C = -\frac{T}{R} \left[\ln \left(1 - \frac{V_{\text{ripple}}}{V_P - 0.7V} \right) \right]^{-1} = 1350 \mu\text{F}$$

$V_o(\text{avg}) = V_o(\text{max}) - V_{\text{ripple}} / 2 = 13.06 \text{ V}.$
Full-wave:

\[V_o(\text{max}) = V_p - 2(0.7 \text{ V}) = 12.74 \text{ V} \rightarrow V_{\text{ripple}} \leq 0.64 \text{ V}. \]

\[C = -\frac{T}{2R} \left[\ln \left(1 - \frac{V_{\text{ripple}}}{V_o(\text{max})} \right) \right]^{-1} = 673 \mu \text{F} \]

\[V_o(\text{avg}) = V_o(\text{max}) - \frac{V_{\text{ripple}}}{2} = 12.42 \text{ V}. \]

Either approach will work and meet the requirements. The full-wave version uses extra diodes, but only half the capacitance. Since diodes are nearly free (pennies per piece), but big capacitors are relatively expensive, the full-wave circuit will actually cost less than the half-wave.

This is why full-wave rectifiers are used more commonly than half-wave rectifiers.

Component manufactures supply full-wave bridge rectifiers packaged as single unit with the transformer sinusoid as input the rectified waveform as the output.