Energy & power

Know the difference between energy and power. (Too many people don’t!)

Energy $E$ is a quantity that indicates the ability or capacity to do work.

- gravitational
- mechanical
- thermal
- electrical
- chemical

Energy is perfectly conserved. It can change forms, but the total energy will always be conserved.

- joules (J) = $\text{kg} \cdot \text{m}^{-2} \cdot \text{s}^{-2}$
- calorie = 4.184 J
- erg = $10^{-7}$ J
- BTU = 1055.056 J (British Thermal Unit)
Power is the rate at which energy is used (converted).

\[ P = \frac{dE}{dt} \]

\[ \Delta E = \int P\,dt \]

- watt (W) = J/s
- horsepower (hp) = 746 W
- BTU/hr
- “ton” = 12,000 BTU/hr (refrigeration)

Power is related to energy in the same way the speed is related to distance.

Don’t confuse them!

Another unit of energy: kilowatt-hour (kW-hr) = 3.6x10^6 J
Electrical energy is described in terms of voltage

\[ E = QV \]

Electrical power

\[ P = I_1 V_1 \]

Current flows through a device with a voltage difference across it.

The charge has gained energy: \( E = QV_1 \)

Take the time rate-of-change:

\[ \frac{dE}{dt} = \frac{dQ}{dt} V_1 \quad P = I_1 V_1 \quad P = V \cdot I \]
Polarities and directions matter – components can add or remove energy from the charge flowing through.

Energy is being added (charge goes to higher voltage as it moves through). This is a *source* of electrical energy. (e.g. battery)

Energy is removed (charge goes to lower voltage as it moves through). This component dissipates electrical energy (e.g. resistor)

Some components are only dissipative: resistors

Others can both source energy and absorb energy – a battery can deliver energy to a circuit or it can be charged.