Thevenin equivalent circuits

This week we will examine Thevenin equivalent circuits by measuring and calculating the Thevenin equivalents of four different circuits. For each of the circuits shown Fig. 1 – 4, follow the procedures outlined below to measure and calculate the Thevenin equivalents.

As always, use good lab procedures as you work. Be sure to measure the values of the resistors used and the voltages of the sources as you set up each circuit. Lay out the circuits carefully and be sure to double-check in order to eliminate simple wiring errors.

1. **Build the circuit as shown.** Measure the voltage across the load resistor \(R_L \) in the circuit. Calculate the power dissipated in the load.

2. **Measure the Thevenin voltage.** Remove the load resistor and use the voltmeter to measure the open-circuit voltage between the two output nodes (i.e. the nodes where \(R_L \) was previously attached). As we saw in class, the open-circuit voltage is equal to the Thevenin equivalent voltage, \(V_{TH} = V_{oc} \).

3. **Measure the Thevenin resistance.** There are several ways to measure the Thevenin resistance. We will use three different approaches.

 a. **Short-circuit current method.** Attach the ammeter across the output terminals and measure the current that flows. (The ammeter serves as a short circuit at the output.) Then \(R_{TH} = V_{TH}/i_{sc} = V_{oc}/i_{sc} \), where \(V_{oc} \) is the open-circuit voltage measured in step 2. Use this method to determine \(R_{TH} \) for the circuit in Fig. 1. (As always, if you are having trouble obtaining readings with the ammeter, have the instructors check the ammeter fuse.)

 b. **Ohm-meter method.** When there are only independent sources and resistors in the circuit, you can just use an ohm-meter. (In class, we called this the “short-cut” method.) De-activate all of the independent sources (remove the voltage sources and replace with short circuits) and then simply measure the resistance at the output terminals using an ohm-meter. Use this method to determine \(R_{TH} \) for the circuit in Fig. 2. This method has limited applications, since it may not always be possible to deactivate the independent sources.

 c. **Voltage-divider method.** Attach a potentiometer across the output terminals. While measuring the voltage across the output terminals, adjust the potentiometer until the output voltage is exactly half of the open-circuit voltage. \(V_o = V_{oc}/2 = V_{TH}/2 \). As we know from our study of voltage dividers, if the two resistors making up a divider have the same resistance, the voltage across either one will be exactly half of the source voltage. In this case, the two resistors are the Thevenin resistance of the circuit and the potentiometer. When the output voltage is exactly half the open-circuit voltage, the potentiometer resistance must be equal to the Thevenin resistance. Remove the potentiometer from the circuit (without changing the setting) and measure the resistance. Use this method to determine \(R_{TH} \) for the circuit in Fig. 3.
d. For the circuit of Fig. 4, measure the Thevenin resistance using all three methods. Confirm that they give the same result for R_{TH}.

4. **Build the Thevenin equivalent circuit** in each case using a voltage source, set to V_{TH}, and a “resistor” equal to R_{TH}. (The resistor can be a potentiometer set to R_{TH} or a collection of fixed resistors that combine to give R_{TH}.) Attach the 1-kΩ load resistor to the equivalent circuit and measure the load voltage and calculate the power. Compare the results the measurements from part (a). Point to ponder: In these circuits, the Thevenin resistance must be determined from the resistors making up the circuit. You can probably convince yourself that these same resistors can be combined in some way to construct R_{Th} in the equivalent circuit.

5. **Calculate the Thevenin equivalent analytically.** Now use circuit analysis to calculate the values for the Thevenin equivalent circuit in each case. Use whatever technique you think is appropriate for the analysis. You can do this before, during, or after lab, but the calculations and comparisons between your measurements and calculations must be in your report.

Maximum power transfer

Before dis-assembling the circuit in Fig. 4, we will use it to look at maximum power transfer. With the circuit wired up and powered as shown in the figure (but without the 1-kΩ load resistor), connect a 10-kΩ potentiometer across the output. Make the following measurements:

1. Adjust the potentiometer so that $v_o = 0.1 \cdot V_{TH}$. Measure the resistance of the potentiometer (remove it from the circuit when measuring) and calculate the power that was being dissipated in the resistor while it was connected in the circuit.

2. Repeat, but set the potentiometer so that $v_o = 0.2 \cdot V_{TH}$.

3. Repeat, but set the potentiometer so that $v_o = 0.3 \cdot V_{TH}$.

4. Continue, in 10% increments up to $v_o = 0.9 \cdot V_{TH}$. (Note: At some point, you may need to change to a 100-kΩ potentiometer in order to get the higher voltages.)

5. Make a table that lists the potentiometer (load) resistances and the corresponding powers. The table should show clearly that the maximum power transfer occurred when $R_{load} = R_{TH}$, as we learned in lecture.
Figure 1.

\[V_S = 15 \text{ V} \]

\[R_1 = 1.5 \text{ k}\Omega \]
\[R_2 = 1.5 \text{ k}\Omega \]
\[R_3 = 3.3 \text{ k}\Omega \]
\[R_4 = 3.3 \text{ k}\Omega \]
\[R_5 = 2.2 \text{ k}\Omega \]
\[R_L = 1 \text{ k}\Omega \]

\[v_o \]

Figure 2.

\[V_S = 15 \text{ V} \]

\[R_1 = 1.5 \text{ k}\Omega \]
\[R_2 = 4.7 \text{ k}\Omega \]
\[R_3 = 1.5 \text{ k}\Omega \]
\[R_4 = 3.3 \text{ k}\Omega \]
\[R_5 = 3.3 \text{ k}\Omega \]
\[R_L = 1 \text{ k}\Omega \]

\[v_o \]

Figure 3.

\[V_S = 10 \text{ V} \]

\[R_1 = 1 \text{ k}\Omega \]
\[R_2 = 1.5 \text{ k}\Omega \]
\[R_3 = 1.5 \text{ k}\Omega \]
\[R_4 = 4.7 \text{ k}\Omega \]
\[R_5 = 3.3 \text{ k}\Omega \]
\[R_L = 1 \text{ k}\Omega \]

\[v_o \]

Figure 4.

\[V_{S2} = 5 \text{ V} \]
\[V_{S1} = 10 \text{ V} \]

\[R_1 = 1.5 \text{ k}\Omega \]
\[R_2 = 2.2 \text{ k}\Omega \]
\[R_3 = 1.5 \text{ k}\Omega \]
\[R_4 = 4.7 \text{ k}\Omega \]
\[R_5 = 4.7 \text{ k}\Omega \]
\[R_L = 1 \text{ k}\Omega \]

\[v_o \]
Design it.

Design the circuit shown in Fig. 5 so that the Thevenin equivalent voltage is 5 V and the Thevenin equivalent resistance is 1.5 kΩ. You will need to choose values for R1, R2, and R3. Build the circuit using and perform measurements to confirm that it has the correct Thevenin voltage and resistance. Demonstrate your design to your lab supervisor.

Figure 5.

![Circuit Diagram]

Reporting

Each lab group should prepare a for the work done in this lab. A report template can be downloaded from the web site. Be sure to include all of the measured and calculated values. To complete the report, add an introduction and a conclusion (about one paragraph each). The report is due in one week.