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Band-bending

In the p-n junction and BJT, we saw that the semiconductor band edges 
were bent in the depletion layers.  We used the depletion 
approximation and Poisson’s equation to relate the band-bending 
(barrier height) to the electric field to the depletion layer width.  In the 
case of depletion, our treatment is reasonably accurate.  However, we 
need to look at the case when the bands bend the other way, creating 
an accumulation layer or when they bend so much in depletion that 
they create an inversion layer.  To handle these cases, we need a more 
complete theory.

In dealing with general band-bending problems, we will find it useful to 
look at bending in p- and n-type material independently.  Once we 
have solutions to the band-bending in the different layers, we can 
combine the separate into a complete solution.
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Upward band bending: 
electrons depleted.  
holes increasing.
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Downward band bending: 
electrons accumulate. 
holes decreasing.
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electrons increasing.

EV(x)

Ei(x)

EFp
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holes accumulate. 
electrons decreasing.
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Poisson-Boltzmann equation
Consider the n-type side of a p-n junction.  We can simplify the 
upcoming math by assuming that: 

1) the donor concentration is position-independent (uniform doping) 

2) all donors are fully ionized, and 

3) ND << NC (the semiconductor is non-degenerate).

Start with Poisson’s equation

d2φ (x)
dx2 = �ρ (x)

εs
Recall the electrostatic potential is related to the band-edge energy by

qφ(x) = –EC(x) + constant

Then we can re-write Poisson’s equation in terms of the conduction-
band energy:

d2EC (x)
dx2 =

qρ (x)
εs
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ρ (x) = q [ND � n (x)]

Using the stated assumptions, we can write the charge density at any x:

To relate the electron concentration to the band-banding, recall that 

n (x) = NC exp

�
�EC (x) � EF

kT

�

Note that in the neutral region, where there is no band-bending (x → –∞)

n (x � ��) = NC exp

�
�EC (� ��) � EF

kT

�
= nno = ND

n (x) = NC exp

�
�EC (x) � EC (x � ��) + EC (x � ��) � EF

kT

�

= NC exp

�
�EC (x) � EC (x � ��)

kT

�
exp

�
�EC (x � ��) � EF

kT

�
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n (x) = ND exp

�
�EC (x) � EC (x � ��)

kT

�

Define a normalized “band-bending parameter”

Then

and the charge density can be written

These relations should make some intuitive sense – as the band bends up 
in an n-type depletion region (ψ is positive), the electron concentration 
decreases, leaving just the exposed dopant charge.  However, if we have 
a situation where the band bends down (ψ is negative), then the electron 
concentration increases exponentially!  (We call this accumulation.)

(No units.)ψn (x) =
EC (x) � EC (x � ��)

kT

n (x) = ND exp
�
�ψn (x)

�

ρ (x) = ND
�
1� e�ψn(x)

�
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We can re-write Poisson’s equation using this new band-bending 
parameter:

Inserting the ρ(x) for uniformly doped n-type semiconductor:

This is the Poisson-Boltzmann equation for a uniformly doped n-type 
semiconductor.  Unfortunately, this is a non-linear differential equation.  
Yuck.

d2ψn (x)
dx2 =

qρ (x)
εskT

d2ψn (x)
dx2 =

qND
εskT

�
1� e�ψ(x)

�

— the general form.

EC (x) � EC (flat) = kT · ψn (x)

φ (x) � φ (flat) =
EC (x) � EC (flat)

q =
kT
q · ψn (x)

E = �dφ
dx =

kT
q
dψn
dx

review:
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The limit of small band-bending: the Debye length
Consider the limit of small band-bending, ( ψ << 1 ).  In that case:

and

This has solutions of the form:

where

LD =

�
εskT
q2ND

is the “Debye length”.

e�ψn � 1� ψn

d2ψn (x)
dx2 =

qND
εskT

ψ (x)

ψn (x) � exp

�
± x
LD

�
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The general solution
To find a general solution, we make use of the fact that the charge 
density depends on position only implicitly through the band-bending.

Start by multiplying both sides by 

Then we integrate the equation, with the boundary conditions that both 
ψn and dψn/dx go to zero as x → –∞.  (i.e. There is no band-bending far 
from the junction and consequently no electric field, either.)

d2ψn (x)
dx2 =

qρ (x)
εskT

2dψn (x)
dx

2d
2ψn
dx2

dψn
dx =

2qρ
�
ψn

�

εskT
dψn
dx

Note the subtle shift in ρ — it is now 
treated as a function of ψn, not x.

�dψn
dx

�2
=

2q
εskT

� ψn

0
ρ

�
ψ�� dψ�
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But, dψn/dx is proportional to electric field:

Re-writing the P-B solution in terms of the electric field:

For the case of the uniformly doped n-type region, where 

ρ(ψn) = qND[1 – exp(–ψn], the integral is easy to do.

E2 (x) =
2kT
qεs

� ψn(x)

0
ρ

�
ψ�� dψ�

E (x) = ±

�
2kT
qεs

� ψn(x)

0
ρ

�
ψ�� dψ�

E (x) = ±

�
2kTND
qεs

�
ψn (x) + e�ψn(x) � 1

�1/2

E = �dφ
dx =

kT
q
dψn
dx
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Because of the square-root, the direction of the electric field is not 
specified by the above equations.  It is easy (using the p-n diode for 
instance) to show that the following rule applies:  If the 
semiconductor extends to the right of the interface in question, the 
sign of    is opposite that of ψ, while for a semiconductor extending 
to the left,    and ψ have the same sign.

E
E

E (x) = ±

�
2kTND
qεs

�
ψn (x) + e�ψn(x) � 1

�1/2
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Strong depletion: the depletion approximation returns
In the case of strong depletion, (ψn > 3 or so) and so exp(–ψn) ≈ 0.  
Then

Recalling that: 

On the n-side, the maximum band-bending corresponds to the total 
electrostatic potential change on the n-side.

This also corresponds to the location of the maximum electric field.

Emax =

�
2qND
εs

�
φn � kT

q

�1/2

E (x) = ±

�
2kTND
qεs

�
ψn (x) � 1

�1/2

φ (x) =
kT
q ψn (x)

φn =
kT
q ψn (0)
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Emax =

�
2qND
εs

�
φn � kT

q

�1/2

This is nearly identical to the result obtained using the depletion 
approximation.  The only difference is the kT/q term.  This is known 
as the Gummel correction, and it represents the gradual transition at 
the depletion-layer edge that was assumed to be abrupt in the 
depletion approximation.  This is a relatively minor correction and 
shows us (finally) that the depletion approximation was really pretty 
accurate.

Then the depletion layer width is 

including the Gummel correction.

wn =
εsEmax
qND

=

����2εs
�
φn � kT

q

�

qND
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Depletion 
approximation

–wn
x

Emax

E (x)

wp

–wn
x

wp

qND

–qNA

ρ(x)
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The p-type case

ψp (x) = �EV (x) � EV (x � ��)

kT

In the p-type case, positive ψp corresponds to downward band 
bending.  This is consistent with the n-type case in that positive ψp  

represents depletion. Given that, all of the equations for the p-type 
case will have the same form as the n-type case.

Define the band-bending in a p-type region.

ρ (x) = �qNA + p (x) = �qNA
�
1� e�ψp(x)

�


