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Moll-Ross

np (0) = npo exp ( qVBE

kT ) np (WB) = npo exp ( qVBC

kT ) ≈ 0

In forward-active operation for an npn BJT the boundary conditions are:

Using the quasi-Fermi level description for the current densities:

Jn (x) = μnn
∂EFn

∂x
Jp (x) = − μpn

∂EFp

∂x

We will assume that BJT is “decent”, so that the hole current in the base 
is small — small enough that we can ignore it.  This implies that ∂EFp/∂x 
≈ 0 — the hole quasi-Fermi level is flat.

For non-dengenerate conditions: n (x) p (x) = n2
i exp (

EFn − EFp

kT )
∂
∂x (EFn − EFp) = kT ( n2

i

n (x) p (x) ) ∂
∂x ( n (x) p (x)

n2
i )
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Integrate from x to WB:

n (x) p (x)
n2

i WB

−
n (x) p (x)

n2
i x

=
Jn

q ∫
WB

x

p (x)
Dnn2

i
dy

The first term is zero.  (Shockly B.C. at reverse-biased collector.) If we 
evaluate the rest of the expression at x = 0:

Jn =
1

∫ WB

0
p(x)

qDnn2
i
dx

⋅ exp ( qVBE

kT )

Apparently,                           is the electron current density scale factor, JSn. [∫
WB

0

p (x)
qDnn2

i
dx]

−1

Note, this is not exactly the formulation used by other authors.  Often, 
the electron charge is not included in the integral.  In that case, the 
integral is an “electron flux scale factor”.  
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If the base material is uniform, then ni2 is constant.

JSn = qn2
i [∫

WB

0

p (x)
Dn

dx]
−1

If the doping is constant, p = NAB, then Dn will also be constant.  In that 
case the integral reduces to NAB·WB /Dn, and the current density factor is 

JSn =
qn2

i Dn

NABWB

exactly as we had seen for the special case of uniform doping that 
serving as our launching point.

If there is no high-level injection, the majority hole concentration will 
be equal to the acceptor doping in the base.

JSn = qn2
i [∫

WB

0

NAB (x)
Dn

dx]
−1
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What’s good for the electron current in the npn is is also good for the 
hole currents:

ΓE = ∫
WE

0

n (x)
qDpn2

i
dxJp1 =

1
ΓE

⋅ exp ( qVBE

kT )
ΓC = ∫

WC

0

n (x)
qDpn2

i
dxJp2 =

1
ΓC

⋅ exp ( qVBC

kT )
And the two current gain parameters can be expressed in terms of the 
Gummel numbers for the three regions.

βF =
JSn

JSp1
=

ΓE

ΓB
βR =

JSn

JSp2
=

ΓC

ΓB

This integral formulation turns out to be very useful in describing many 
other non-ideal aspects of BJT operation.  It is generally referred to as 
the Gummel number for the base.

ΓB = ∫
WB

0

p (x)
qDnn2

i
dx Jn =

1
ΓB

⋅ exp ( qVBE

kT )
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General base transport factor
In the Gummel number calculation, if we go back one step from the 
final result (top equation of page 2),

Use the above equation to express the electron concentration n(x):

−
np
n2

i x

=
Jn

q ∫
WB

x

p (x)
Dnn2

i
dy

n (x) = − ( n2
i

p ) ( Jn

q )∫
WB

x

p (x)
Dnn2

i
dy

Integrate over the length of the base

∫
WB

0
n (x) dx = − ( Jn

q )∫
WB

0 [ n2
i

p ∫
WB

x

p (x)
Dnn2

i
dy] dx
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−
q ∫ WB

0
n (x) dx

Jn
= ∫

WB

0 [ n2
i

p (x) ∫
WB

x

p (x)
Dnn2

i
dy] dx

The numerator on the left-hand side (including the negative sign) is the 
total electron charge (per unit area) in the base, QB.  So the expression 
on the left is the base-transit time.

−
q ∫ WB

0
n (x) dx

Jn
=

Qnb

Jn
= τB

We see that the messy double integral on the right is a generalized 
expression for the base-transit time and includes any sort of non-
uniformity in the base.

τB = ∫
WB

0 [ n2
i

p (x) ∫
WB

x

p (x)
Dnn2

i
dy] dx

Going back to our simple BJT with uniform regions where p(x) = NAB 
and Dn and ni are also constant, we extract the simple result:

τB =
W2

B

2Dn
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Example
A silicon npn BJT has uniformly doped emitter and collector regions 
(NDE = 1018 cm–3 and NDC = 1015 cm–3).  The doping in the base varies 
exponentially from emitter to collector:

NAB (x) = NAB (0) exp (−
x

LD ) = (2.5 × 1017 cm−3) exp (−
x

0.5 μm )
Assume that the diffusion coefficients can be treated as constants: 
Dn = 35 cm2/s and Dp = 10 cm2/s.  The widths of the 3 three regions are: 
WE = 5 µm, WB = 2 µm, and WC = 10 µm.  Calculate BF and BR.

ΓB = ∫
WB

0

NAB (x)
qDnn2

i
dx =

NAB (0)
qDnn2

i ∫
2 μm

0
exp (−

x
0.5 μm ) dx = 6.1 × 1010 cm2

A

JSn =
1

ΓB
= 1.64 × 10−11 A

cm2

JSp1 =
qDpn2

i

NDEWE
= 1.15 × 10−13 A

cm2

JSp2 =
qDpn2

i

NDCWE
= 5.76 × 10−11 A

cm2

βF =
JSn

JSp1
= 143

βF =
JSn

JSp1
= 0.285


