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Second-order filters 
Second-order filters: 

• Have second order polynomials in the denominator of the transfer 
function, and can have zeroth-, first-, or second-order polynomials in 
the numerator. 

• Use two reactive components — 2 capacitors, 2 inductors, or one of 
each. 

• Can be used to make low-pass, high-pass, and band-pass frequency 
responses.  (There is also band-reject). 

• Have sharper cut-offs than first-order for low-pass and high-pass 
types.  (Clearer distinction between passband and cut-off band.) 

• Provide more flexibility in shaping the frequency response.
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Second-order filters 
Our approach is the same as the first-order circuits. 

• Examine the transfer functions for low-pass, high-pass, and (now) 
band-pass. 

• Look at the details of the frequency response of each type of filter — 
cut-off frequency, pass-band gain, slope in the cut-off band. 

• Look at circuits that exhibit the low-pass, high-pass, or band-pass 
behavior. 

• Try some numerical examples to get a feel for the numbers. 

• Build and test some circuits in lab.
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The general form for the transform function of a second order filter is that of a 
biquadratic (or biquad to the cool kids). 

 

As before, Go is the “gain” of the transfer function. As seen with first-order 
filters, for passive second-order filters have Go ≤ 1, and active filters can have 
gains larger than 1. 

The poles of the transfer function determine the general characteristics, and 
the zeroes determine the filter type. We write the denominator using 
parameters that will better help us characterize the general behavior. 

where ωo is the characteristic frequency, which determines where things are 
changing in the frequency response. Important to note: ωo is not (necessarily) 
equal to the cut-off frequency. (Details to follow.) QP is the pole quality factor, 
and it determines the sharpness of the features in frequency response curve.  
Note that QP has no dimensions.

T (s) =
a2s2 + a1s + ao

β2s2 + β1s + βo
= Go ⋅

a2s2 + a1s + ao

s2 + b2s + bo
= Go ⋅

a2 (s + Z1) (s + Z2)
(s + P1) (s + P2)

D (s) = s2 + b1s + bo = s2 + (P1 + P2) s + P1P2 = s2 + ( ωo

QP ) s + ω2
o
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Use the quadratic formula to determine the poles.

The key is the square-root.  If the argument under the square-root is 
positive, there will be two real roots.  If the argument is negative, the 
roots will be a complex conjugate pair.  The dividing line is QP = 0.5:

• QP < 0.5 → two real, distinct, negative roots. 

• QP = 0.5 → two real, repeated negative roots. 

• QP > 0.5 → complex conjugate roots.

D (s) = s2 + ( ωo

QP ) s + ω2
o

P1,2 = −
ωo

2QP
± ( ωo

2QP )
2

− ω2
o

=
ωo

2QP (−1 ± 1 − 4Q2
P)
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ωo = 600 s–1 ;  QP = 0.3

Example: P1 = –200 s–1 and P2 = –1800 s–1. 

σ 

jω 

XX
P1P2

D (s) = (s + 200 s−1) (s + 1800 s−1)

QP < 0.5
There will be two distinct real roots.  The 
step function response would be an 
overdamped transient.

= s2 + (2000 s−1) s + (360,000 s−2)
D (s) = s2 + ( ωo

QP ) s + ω2
o

P1 = −
ωo

2QP
+ ( ωo

2QP )
2

− ω2
o

P2 = −
ωo

2QP
− ( ωo

2QP )
2

− ω2
o
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QP = 0.5

There are two identical (repeated) real 
roots.  The step function response would 
be a critically damped transient.

σ 

jω 

XX
P1 = P2

P1 = P2 = −
ωo

2QP

Example: P1 = P2 = –1000 s–1. 

D (s) = (s + 1000 s−1)2

= s2 + (2000 s−1) s + (106 s−2)

ωo = 1000 s–1 ;  QP = 0.5

D (s) = s2 + ( ωo

QP ) s + ω2
o
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QP > 0.5
The roots will be a complex-conjugate pair. 
The step response would be an 
underdamped transient. σ 

jω P1
X

X
P2 = P1*

P1 = −
ωo

2QP
+ ω2

o − ( ωo

2QP )
2

P2 = −
ωo

2QP
− ω2

o − ( ωo

2QP )
2

ωo = 1414 s–1 ;  QP = 0.707

Example: P1 = –1000 s–1 + j1000 s–1 and P2 = –1000 s–1 – j1000 s–1

D (s) = (s + 1000 s−1 + j1000 s−1) (s + 1000 s−1 − j1000 s−1)

D (s) = s2 + ( ωo

QP ) s + ω2
o

= s2 + (2000 s−1) s + (2 × 106 s−2)



EE 230 second-order filters – 8

low-pass

For a low-pass response, the function should not go to zero as s → 0, 
meaning that neither the s or s2 terms can be in the numerator. 
Accordingly, we set a2 = a1 = 0, reducing the numerator the just a 
constant term. For s → 0, T is a constant, and s → ∞, T goes to zero. 
(Another way of saying this is that the zeros must occur at infinity.)  We 
can arrange the constant from the numerator and use the parameters 
defined earlier to write the low-pass transfer function as:

This may be worth memorizing.

T (s) =
a2s2 + a1s + ao

b2s2 + b1s + bo

TLP (s) = Go ⋅
ω2

o

s2 + ( ωo

QP ) s + ω2
o

The form of the numerator determines the type of filter, low-pass, high-
pass, band-pass, etc.

As s → 0:   → 1
ω2

o

s2 + ( ωo

QP ) s + ω2
o

Low-pass
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To examine the frequency response, set s = jω. (Make Go = 1 in order to 
focus on the rest of the function.)

Extracting the magnitude and phase.

TLP (jω) =
ω2

o

−ω2 + j ( ωo

QP ) ω + ω2
o

=
ω2

o

(ω2
o − ω2) + j ( ωo

QP ) ω

TLP =
ω2

o

(ω2
o − ω2)2 + ( ωo

QP
⋅ ω)

2
θLP = − arctan ( ωo

QP ) ( ω
ω2

o − ω2 )

At low frequencies, |TLP| ≈ 1, as expected.  At high frequencies, the 
magnitude varies inversely with the square of the frequency.  The phase 
ranges from 0° at low frequencies to –180° at high frequencies. 

Note that for ω = ωo, |TLP| = QP and θLP = –90°.  Here is an interesting 
observation:  If Qp > 1, then at ω = ωo, |Tlp| > 1 !! This requires some 
further exploration.
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Unfortunately, the math isn’t as simple as in the first-order case. After 
some tedious algebra that includes choosing the correct root when 
applying the quadratic equation:

Yikes!  (Exercise: Derive this for yourself.) 

ω2
o

(ω2
o − ω2

c )2 + ( ωo

QP
⋅ ωc)

2
=

1

2

ωc = ωo 1 −
1

2Q2
P

+ 1 + (1 −
1

2Q2
P )

2

The corner frequency is defined in exactly the same manner as with 
first-order filters,

TLP (ωc) = 1/ 2 (Don’t forget to include Go, if Go ≠ 1.)
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As QP become large, ωc = 1.55ωo.

Note that ωc = ωo when  . So in this once instance the corner 
frequency is easy to find.  We will see that this is an important case.

QP = 1/ 2

0.0
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A plot of ωc / ωo vs. QP.  (Expression from the previous slide.)

ωc

ωo

QP
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Linear-scale plots of the second-order low-pass magnitude, with QP = 0.125, 
0.5, and 1.25.  For all plots, the characteristic frequency is fo = 1 kHz and the 
gain is Go = 1. Also shown for comparison is a first-order response with fc = 1 
kHz.  What is going on with the magnitude curve for QP = 1.25?
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Bode versions of magnitude plots from previous slide. Note that for 
frequencies sufficiently high into the cut-off band, the magnitudes decreases at 
rate of –40 dB/dec — twice the slope for first-order.  This is due to |T| ∝ ω–2 
for ω >> ωo.
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Phase angle frequency responses for the various cases from the previous 
slides.
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The “bump”
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high-pass

This also may be worth memorizing.

THP (s) = Go ⋅
s2

s2 + ( ωo

QP ) s + ω2
o

For a high-pass response we want T → 0 as s → 0 and T → consant as 
s → ∞.  We accomplish that most easily by setting a1 = ao = 0 in the 
numerator.  Again, we can manipulate the coefficients and use the 
parameters defined earlier to write the high-pass function as

The polynomial ratio varies from 0 to 1 as s increases from 0 to ∞. The 
gain, Go, takes care of the constant value at high frequencies, as 
determined by any amplifiers or voltage dividers within the circuit.

T (s) =
a2s2 + a1s + ao

b2s2 + b1s + bo
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To examine the frequency response, set s = jω. (And again, setting Go = 1.)

Extracting the magnitude and phase.

THP (jω) =
−ω2

−ω2 + j ( ωo

QP ) ω + ω2
o

=
−ω2

(ω2
o − ω2) + j ( ωo

QP ) ω

THP =
ω2

(ω2
o − ω2)2 + ( ωo

QP
⋅ ω)

2
θHP = 180∘ − arctan ( ωo

QP ) ( ω
ω2

o − ω2 )

The 180° comes from the negative sign in the numerator of the T.F. 

These expressions are  very similar to the corresponding low-pass 
functions.  The resulting plots are mirror images of the low-pass plots.  
The expressions for the cut-off frequency and the properties of the 
“bump” in the high-QP plots are similarly symmetric to those from the 
low-pass case.
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Linear-scale plots of the second-order high-pass magnitude, with QP = 0.125, 0.5, 
and 1.25.  For all plots, the characteristic frequency is fo = 1 kHz and the gain is 
Go = 1. Also shown for comparison is a first-order response with fc = 1 kHz.
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Bode versions of magnitude plots from previous slide. As seen with the high-
pass Bode plot, there is a slope of 40 dB/dec in the cut-off region, indicative of 
an inverse-squared relationship.
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Phase angle frequency responses for the various cases of the second-
order high-pass functions.
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band-pass

For a band-pass response, the function should go to zero both for s = 0 
and s → ∞. This can be accomplished by setting a2 = ao = 0 in the 
numerator, keeping only the linear term.  Once again, we can combine 
the coefficients and use the standard 2nd-order form come up with the 
band-pass transfer function.

This too may be worth memorizing.  (But if you note the symmetry of 
the various expressions, remembering them all is easy.)

TBP (s) = Go ⋅
( ωo

QP ) s

s2 + ( ωo

QP ) s + ω2
o

T (s) =
a2s2 + a1s + ao

b2s2 + b1s + bo
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To examine the frequency response, set s = jω.  (Letting Go = 1, again.)

Extracting the magnitude and phase.

TBP (jω) =
j ( ωo

QP ) ω

−ω2 + j ( ωo

QP ) ω + ω2
o

=
j ( ωo

QP ) ω

(ω2
o − ω2) + j ( ωo

QP ) ω

TBP =
( ωo

QP ) ω

(ω2
o − ω2)2 + ( ωo

QP
⋅ ω)

2
θBP = 90∘ − arctan ( ωo

QP ) ( ω
ω2

o − ω2 )

The 90° comes from the imaginary value in the numerator of the T.F. 

Again, very similar expressions to the low-pass and high-pass cases. 
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Linear-scale plots of the second-order band-pass magnitude, with QP = 0.125, 
0.5, and 1.25.  For all plots, the characteristic frequency is fo = 1 kHz and the gain 
is Go = 1.  (There is no first-order curve for comparison — first-order BP filters do 
not exist.)
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Bode versions of magnitude plots from previous slide. In the high- and low-
frequency cut-off bands, the slope is ±20 dB/dec.
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Phase angle frequency responses for the various cases of the second-
order high-pass functions.
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The peak of the bandpass magnitude occurs at the characteristic 
frequency and falls off at both higher and lower frequencies.  Thus there 
are two corner frequencies, defined in the usual manner.  The difference 
between the two frequencies is the bandwidth of the filter.  To calculate 
the two corners and the bandwidth, we start in the usual manner:

After a fair amount of tedious — and sometimes tricky — algebra, we find 
the high and low corner frequencies, which we denote as ωc+ and ωc–.

The bandwidth (BW) is the difference between these corners.  It turns 
out to have a surprisingly simple relationship to ωo and QP:

bandwidth (BW): 

( ωo

QP ) ωc

(ω2
o − ω2

c )2 + ( ωo

QP
⋅ ωc)

2
=

1

2

ωc+ = ωo 1 +
1

4Q2
P

+
1

2QP
ωc− = ωo 1 +

1
4Q2

P
−

1
2QP

Δω = ωc+ − ωc− =
ωo

QP

The quality factor directly 
controls the bandwidth.


