In the $R L C$ circuit shown at right, the source voltage changes abruptly from $V_{s}=0 \mathrm{~V}$ to $V_{s}=10 \mathrm{~V}$ at $\mathrm{t}=0$. Determine expressions for the current, and the capacitor, inductor, and resistor voltages for $\mathrm{t}>0$.

Then change the resistor value to $3.5 \mathrm{k} \Omega$ and determine the current and voltages again. (Note: You do not need to derive
 everything from scratch. You will need to determine if
circuit is over-damped or underdamped, as well as the appropriate initial and final values.)

For $R=1 \mathrm{k} \Omega$:
$v_{c}(\mathrm{t})=$ \qquad
$i(\mathrm{t})=$ \qquad
$v_{L}(\mathrm{t})=$ \qquad
$v_{R}(\mathrm{t})=$ \qquad

For $R=3.5 \mathrm{k} \Omega$:
$v_{c}(\mathrm{t})=$ \qquad
$i(\mathrm{t})=$ \qquad
$v_{L}(\mathrm{t})=$ \qquad
$v_{R}(\mathrm{t})=$ \qquad

