\qquad

The current cost of inexpensive AA alkaline (i.e. disposable) batteries seems to around $\$ 0.30$ per battery. (www.amazon.com/AA-batteries/s? $\mathrm{k}=\mathrm{AA}+$ batteries - some are a bit cheaper and some more expensive, but 30 cents seems to be a typical value.) Alkaline AA batteries produces a steady voltage of 1.5 V and are rated at around 2.5 A -hours.
a. What is the effective amount of charge (in coulombs) stored in one battery?
\qquad
$Q=$
b. What is the amount of energy (in J) stored in one battery? $E=$ \qquad
c. If one of these batteries could be drained all way down to 0 J , how long will it last if a constant 10 mA is flowing out of it?
$t=$ \qquad
d. Calculate the cost of the energy stored in this battery, expressed in $\$ / \mathrm{kW} \cdot \mathrm{hr}$. (As a point of comparison, the cost of energy delivered by the electric utility is probably around $\$ 0.15 / \mathrm{kW} \cdot \mathrm{hr}$.)
$\operatorname{cost}=$ \qquad

Re-chargeable lithium NiMH batteries are around $\$ 2$ each. (www.amazon.com/Panasonic-BK-3MCCA16FA-eneloop-Pre-Charged-Rechargeable/dp/B00JHKSN4O/). These produce a voltage of 1.2 V , are rated for $2 \mathrm{~A} \cdot \mathrm{hr}$, and can be re-charged 2000 times. What is the cost of the using a rechargeable battery 2000 times, if the energy for re-charging is $\$ 0.15 / \mathrm{kW} \cdot \mathrm{hr}$ and the charging efficiency is 50% ? (Meaning only half of the incoming energy is actually stored in the battery - the rest is lost as heat or something else. This efficiency is a just a guess, but let's go with it for the purposes of this problem.) How much would it cost to use alkaline (single-use) batteries to provide the same energy as 2000 re-uses of the lithium battery?
a. Total cost of using the rechargeable 2000 times.
b. Cost of comparable amount of energy from alkalines. \qquad
(Caveats: The rechargeable battery requires a charging unit, which should be included in the total cost. A charger might cost $\$ 25$ - or $\$ 3$ if you built it yourself. In general, batteries cannot be depleted down to zero percent. For this problem we are ignoring both of these factors.)

