\qquad

In the circuit shown at right, the voltage source is sinusoidal with $V_{S}(t)=V_{m} \cos (\omega t)$,
where $V_{m}=5 \mathrm{~V}$ and $\omega=2500 \mathrm{rad} / \mathrm{s}$. Write the expression for the total current flowing through the source. Then repeat for $\omega=5000$
 rad/s.
$i_{S}(\omega=2500 \mathrm{rad} / \mathrm{s})=$ \qquad
$i_{S}(\omega=5000 \mathrm{rad} / \mathrm{s})=$ \qquad

In the circuit shown at right, the current source is sinusoidal with
$I_{S}(t)=I_{m} \sin (\omega t)$,
where $I_{m}=20 \mathrm{~mA}$ and $\omega=20,000 \mathrm{rad} / \mathrm{s}$. Write the expression for the total voltage across the source. Then repeat for $\omega=10,000 \mathrm{rad} / \mathrm{s}$.

$v_{S}(\omega=20,000 \mathrm{rad} / \mathrm{s})=$ \qquad
$v_{S}(\omega=10,000 \mathrm{rad} / \mathrm{s})=$ \qquad

