\qquad

The op amp in the circuit at right is ideal.

a. Calculate the expression for the output voltage as a function of the two input voltages, v_{a} and v_{b}

$$
v_{o}=
$$

\qquad
b. If $v_{a}=1 \mathrm{~V}$ and $v_{b}=0.33 \mathrm{~V}$, what is the value of the output? $v_{o}=$ \qquad
c. What is the output if $v_{a}=1 \mathrm{~V}$ and $v_{b}=0.33 \mathrm{~V}$ and $R_{L}=2 \mathrm{k} \Omega ? v_{o}=$ \qquad
d. What is the output if $v_{a}=1 \mathrm{~V}$ and $v_{b}=0.33 \mathrm{~V}$ and $R_{L}=125 \Omega$? $v_{o}=$ \qquad
e. if $v_{a}=1 \mathrm{~V}$ and $v_{b}=1.33 \mathrm{~V}$ and $R_{L}=500 \Omega$, what is the total power being delivered by the input voltage sources and what is the power being delivered to the load? How do you account for the difference?
$P_{v a}+P_{v b}=$ \qquad ; $P_{R L}=$ \qquad

