\qquad

In the amplifier circuit below, the feedback network consists of the two resistors $R_{l}=1$ $\mathrm{k} \Omega$, and $R_{2}=10 \mathrm{k} \Omega$.

a. Start by letting the model be ideal: $R_{i} \rightarrow \infty, R_{o} \rightarrow 0$, and $A \rightarrow \infty$. Calculate the closed-loop gain in that case.
$G=v_{o} / v_{s}=$ \qquad
b. Then repeat with a model whose parameters are: $R_{i}=50 \mathrm{k} \Omega, R_{o}=500 \Omega$, and $A=100$. Note: Do not try to analyze this as a feedback problem. Just use circuit analysis to find the closed-loop gain. A couple of node equation might be one way to start. Recall that the notes had similar examples with either $R_{i}<\infty$, or $R_{o}>0$, but not both at the same time.
$G=v_{o} / v_{s}=$ \qquad

