

In the amplifier circuit below, the feedback network consists of the two resistors $R_1 = 1$ k Ω , and $R_2 = 10$ k Ω .

a. Start by letting the model be ideal: $R_i \rightarrow \infty$, $R_o \rightarrow 0$, and $A \rightarrow \infty$. Calculate the closed-loop gain in that case.

 $G = v_o / v_s = _$

b. Then repeat with a model whose parameters are: $R_i = 50 \text{ k}\Omega$, $R_o = 500 \Omega$, and A = 100. Note: Do not try to analyze this as a feedback problem. Just use circuit analysis to find the closed-loop gain. A couple of node equation might be one way to start. Recall that the notes had similar examples with either $R_i < \infty$, or $R_o > 0$, but not both at the same time.

 $G = v_o/v_s =$

