Use AC analysis to calculate the gain for the circuit shown at right for $\omega=100$ rad/s, 10^3 rad/s , 10^4 rad/s, and 10^5 rad/s. Note that since $\underline{v_o}$ will be complex, the gain will also be complex.

$$v_i \circ \frac{C_1}{1.5 \, \mu \text{F}} \stackrel{R_1}{\downarrow} \frac{C_2}{15 \, \text{k}\Omega}$$

$$G = \frac{\tilde{v}_o}{\tilde{v}_i}$$

Express the answers in magnitude / phase form.

$$\omega = 10^2 \text{ rad/s}$$
: $G =$

$$\omega = 10^3 \text{ rad/s}$$
: $G =$

$$\omega = 10^5 \text{ rad/s}$$
: $G =$