\qquad

Use AC analysis to find the complex Thevenin equivalent with respect to nodes a and b in the circuit shown at right. The Thevenin source should be represented as a complex number in magnitude-andphase form. The Thevenin impedance can be expressed in either real-and-imaginary
 or magnitude-and-phase form. Include a sketch of the Thevenin equivalent circuit.

The amplitude of the source is $I_{m}=10 \mathrm{~mA}$, and the angular frequency is $\omega=10^{5} \mathrm{rad} / \mathrm{s}$.
$\mathbf{V}_{\mathrm{TH}}=$ \qquad
$Z_{T H}=$ \qquad

