\qquad
a. For the $R L$ parallel combination shown at right, what is the angular frequency at which the magnitude of the equivalent impedance be equal to 500Ω ?
$\omega=$ \qquad

b. What is the phase angle of the impedance at the frequency calculated in part (a) above?

$$
\theta=
$$

\qquad
c. At what angular frequency is the phase angle of $Z_{e q}$ equal to $+45^{\circ}$?

$$
\omega=
$$

\qquad
d. What is the magnitude of the impedance at the frequency calculated in part (c) above?

$$
\left|Z_{e q}\right|=
$$

\qquad
e. What is the magnitude of the impedance as $\omega \rightarrow 0$?

$$
\left|Z_{e q}\right|=
$$

\qquad
f. What is the magnitude of the impedance as $\omega \rightarrow \infty$?

$$
\left|Z_{e q}\right|=
$$

\qquad

