\qquad
a. Find values of R and C such that a series $R-C$ combination would have an impedance of $Z=4 \mathrm{k} \Omega-j 3 \mathrm{k} \Omega$. The frequency is $\omega=10^{5} \mathrm{rad} / \mathrm{s}$.
$R=$ \qquad ; $C=$ \qquad
b. Find values of R and C such that a parallel R - C combination would have an impedance of $Z=4 \mathrm{k} \Omega-j 3 \mathrm{k} \Omega$. The frequency is $\omega=10^{5} \mathrm{rad} / \mathrm{s}$.

$$
R=
$$

\qquad ; $C=$ \qquad
c. Find values of R and L such that a series R - L combination would have an impedance of $Z=4 \mathrm{k} \Omega+j 3 \mathrm{k} \Omega$. The frequency is $\omega=10^{5} \mathrm{rad} / \mathrm{s}$.
\qquad
$R=$; $L=$ \qquad
d. Find values of R and L such that a parallel R - L combination would have an impedance of $Z=4 \mathrm{k} \Omega+j 3 \mathrm{k} \Omega$. The frequency is $\omega=10^{5} \mathrm{rad} / \mathrm{s}$.

$$
R=
$$

\qquad ; $L=$ \qquad

