a. Find values of R and C such that a *series* R-C combination would have an impedance of $Z = 4 \,\mathrm{k}\Omega - j3 \,\mathrm{k}\Omega$. The frequency is $\omega = 10^5 \,\mathrm{rad/s}$.

R = _______; *C* = ______

b. Find values of R and C such that a parallel R-C combination would have an impedance of $Z = 4 \,\mathrm{k}\Omega - j \,3 \,\mathrm{k}\Omega$. The frequency is $\omega = 10^5 \,\mathrm{rad/s}$.

R = ________; *C* = ______

c. Find values of R and L such that a *series* R-L combination would have an impedance of $Z = 4 \,\mathrm{k}\Omega + j3 \,\mathrm{k}\Omega$. The frequency is $\omega = 10^5 \,\mathrm{rad/s}$.

R = _____; L = _____

d. Find values of R and L such that a parallel R-L combination would have an impedance of $Z = 4 \,\mathrm{k}\Omega + j \,3 \,\mathrm{k}\Omega$. The frequency is $\omega = 10^5 \,\mathrm{rad/s}$.

R = ______; L = ______