Problem 1

Find the Thevenin equivalent of the circuit shown below with respect to the terminals a and b.

\[V_{TH} = \quad \quad \quad \quad \quad \quad \quad R_{TH} = \quad \quad \quad \quad \quad \quad \quad \]

\[\beta = 4 \]
Problem 2

For the op-amp circuit below, find v_o in term of v_a, v_b, and v_c. Assume that the op amps are ideal.

\[v_o = \text{expression} \]
Problem 3

In the circuit at right, the switch has been closed for a long time and then opens at \(t = 0 \).

The capacitor voltage equation for \(t > 0 \) is

\[
v_c(t) = V_f - (V_f - V_i) \exp \left(-\frac{t}{RC} \right)
\]

Determine the quantities for the transient equation:

\[
V_f = ___________________________
\]

\[
V_i = ___________________________
\]

\[
\tau = RC = ___________________________
\]

Find the time \(t_1 \) at which capacitor voltage is halfway between \(V_i \) and \(V_f \):

\[
t_1 = _______________
\]
Problem 4

In the circuit at right, the switch has been open for a long time and then closes at $t = 0$.

The inductor current equation for $t > 0$ is

$$i_L(t) = I_f - (I_f - I_i) \exp \left(-\frac{t}{\tau} \right)$$

Determine the quantities for the transient equation:

$I_f =$ ___________________________

$I_i =$ ___________________________

$\tau = \frac{L}{R}$ = ___________________________

Find the time t_1 at which inductor current is halfway between I_i and I_f: $t_1 =$ _______________________